Factorization as a Rank 1 Problem

نویسندگان

  • Pedro M. Q. Aguiar
  • José M. F. Moura
چکیده

Tomasi and Kanade [1] introduced the factorization method for recovering 3D structure from 2D video. In their formulation, the 3D shape and 3D motion are computed by using an SVD to approximate a matrix that is rank 3 in a noiseless situation. In this paper we reformulate the problem using the fact that the x and y coordinates of each feature are known from their projection onto the image plane in frame 1. We show how to compute the 3D shape, i.e., the relative depths z, and the 3D motion by a simple factorization of a matrix that is rank 1 in a noiseless situation. This allows the use of very fast algorithms even when using a large number of features and large number of frames. We also show how to accommodate confidence weights for the feature trajectories. This is done without additional computational cost by rewriting the problem as the factorization of a modified matrix.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Triple factorization of non-abelian groups by two maximal subgroups

The triple factorization of a group $G$ has been studied recently showing that $G=ABA$ for some proper subgroups $A$ and $B$ of $G$, the definition of rank-two geometry and rank-two coset geometry which is closely related to the triple factorization was defined and calculated for abelian groups. In this paper we study two infinite classes of non-abelian finite groups $D_{2n}$ and $PSL(2,2^{n})$...

متن کامل

Unifying Low-Rank Models for Visual Learning

Many problems in signal processing, machine learning and computer vision can be solved by learning low rank models from data. In computer vision, problems such as rigid structure from motion have been formulated as an optimization over subspaces with fixed rank. These hard -rank constraints have traditionally been imposed by a factorization that parameterizes subspaces as a product of two matri...

متن کامل

Fast Nonnegative Matrix Factorization with Rank-one ADMM

Nonnegative matrix factorization (NMF), which aims to approximate a data matrix with two nonnegative low rank matrix factors, is a popular dimensionality reduction and clustering technique. Due to the non-convex formulation and the nonnegativity constraints over the two low rank matrix factors (with rank r > 0), it is often difficult to solve NMF efficiently and accurately. Recently, the altern...

متن کامل

Algorithms for Positive Semidefinite Factorization

This paper considers the problem of positive semidefinite factorization (PSD factorization), a generalization of exact nonnegative matrix factorization. Given an m-by-n nonnegative matrix X and an integer k, the PSD factorization problem consists in finding, if possible, symmetric k-by-k positive semidefinite matrices {A, ..., A} and {B, ..., B} such that Xi,j = trace(AB) for i = 1, ...,m, and ...

متن کامل

Unsupervised Multi-Level Non-Negative Matrix Factorization Model: Binary Data Case

Rank determination issue is one of the most significant issues in non-negative matrix factorization (NMF) research. However, rank determination problem has not received so much emphasis as sparseness regularization problem. Usually, the rank of base matrix needs to be assumed. In this paper, we propose an unsupervised multi-level non-negative matrix factorization model to extract the hidden dat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999